1,135 research outputs found

    Case–control, kin-cohort and meta-analyses provide no support for STK15 F31I as a low penetrance colorectal cancer allele

    Get PDF
    Recently, homozygosity for T91A single-nucleotide polymorphism (SNP) in the serine/threonine kinase (STK15) gene, which generates the substitution F31I has been proposed to increase the risk of a number of tumours including colorectal cancer (CRC). To further evaluate the relationship between STK15 F31I and risk of CRC, we genotyped 2558 CRC cases and 2680 controls for this polymorphism. We found no evidence that homozygosity for the STK15 31I genotype confers an increased risk of CRC (odds ratio=0.95, 95% confidence interval (CI): 0.74–1.24). We also conducted a kin-cohort analysis to assess risk among first-degree relatives of the CRC cases. The hazard ratio for I/I homozygotes compared to F/F homozygotes was 1.65 (95% CI: 0.39–3.17). A meta-analysis of our case–control data and three previous studies also provided no evidence of an elevated risk of CRC associated with homozygosity. These data provide no support for the hypothesis that sequence variation in STK15 defined by SNP F31I per se confers an elevated risk of CRC

    Do female association preferences predict the likelihood of reproduction?

    Get PDF
    Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (<i>Xiphophorus helleri</i>) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice but that ornament characteristics of the male are also important

    Algebraic conformal quantum field theory in perspective

    Full text link
    Conformal quantum field theory is reviewed in the perspective of Axiomatic, notably Algebraic QFT. This theory is particularly developped in two spacetime dimensions, where many rigorous constructions are possible, as well as some complete classifications. The structural insights, analytical methods and constructive tools are expected to be useful also for four-dimensional QFT.Comment: Review paper, 40 pages. v2: minor changes and references added, so as to match published versio

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis

    Get PDF
    Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis

    Density functional theory studies of MTSL nitroxide side chain conformations attached to an activation loop

    Get PDF
    A quantum-mechanical (QM) method rooted on density functional theory (DFT) linked to the Stochastic Liouville equation (SLE) in the Fokker Planck (FP) form has been employed for the first time to sample the methane-thiosulfonate spin label (MTSL) conformational space attached to the Aurora-A kinase activation loop and to calculate the EPR spectrum. The features of the calculated energy surface allowed us to describe the system in a limited number of rotamers stabilized by interactions of the MTSL side chain and neighbouring residues. The relevant magnetic parameters and the electron paramagnetic resonance (EPR) spectrum were subsequently calculated from the trajectories of the spin probe in the protein environment. The comparison between theoretical and experimental continuous wave (CW) EPR spectra revealed some small differences in the EPR line shape which arises from the combinations of g- and A-values obtained from the conformations selected. The theoretical approach adopted in this work can be used to recognise the contribution of MTSL rotamers to the EPR spectrum in order to help extract structural/dynamics properties of protein from the experimental data

    Aurora-A Interacts with AP-2α and Down Regulates Its Transcription Activity

    Get PDF
    Aurora-A is a serine/threonine protein kinase and plays an important role in the control of mitotic progression. Dysregulated expression of Aurora-A impairs centrosome separation and maturation, which lead to disrupted cell cycle progression and tumorigenesis. However, the molecular mechanism by which Aurora-A causes cell malignant transformation remains to be further defined. In this report, using transcription factors array and mRNA expression profiling array, we found that overexpression of Aurora-A suppressed transcription activity of AP-2α, a tumor suppressor that is often downregulated in variety of tumors, and inhibited expression of AP-2α-regulated downstream genes. These array-based observations were further confirmed by microwell colorimetric TF assay and luciferase reporter assay. Downregulated transcription activity of AP-2α by Aurora-A was found to be associated with reduced AP-2α protein stability, which appeared to be mediated by Aurora-A enhanced ubiquitin-dependent proteasomal degradation of AP-2α protein. Interestingly, Aurora-A-mediated AP-2α degradation was likely dependent Aurora-A kinase activity since inhibition of Aurora-A kinase activity was able to rescue Aurora-A-induced degradation of AP-2α. Moreover, we defined a physical interaction between Aurora-A and AP-2α, and such interaction might bridge the suppressive effect of Aurora-A on AP-2α protein stability. These findings provide new insights into molecular mechanism by which Aurora-A acts as an oncogenic molecule in tumor occurrence and malignant development
    corecore